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Time evolution of the radial location of the He-shell flash convection zone based on the 1-D stellar evolution model of 
Herwig.  Time is set to 0 at the peak of the He-burning luminosity.  Dots represent individual time steps.  Lagrangian 
lines at different mass fractions are shown.  The convection zone grows both in radius and in mass fraction over the 2-
year interval shown.  Our simulation is performed at about time 0.2 yr on this slide.



Here we see the central 

0.2% of the simulation domain,                                     convection cells as 

large as about a fifth of the entire convection zone are seen by this time.
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Here we see the upper                                                   boundary of the 

convection zone above the helium burning shell, looking from the center of 

the star outward.  The blue descending plumes trace out the convection cells
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Here we see the upper boundary of the convection zone 
above the helium burning shell, looking from the center of the star outward.  

The blue descending plumes trace out the convection cells

PPM simulation 
of AGB star 
helium shell 

flash 
convection 
on a 15363

grid.

Note the trains of small vortices containing 
entrained, stable gas being drawn down into the 

convection zone.

Top Half of 
3-D Domain

t = 400 min. 

FVH+He

Energy release 
from burning
ingested
hydrogen
is shown
as the dark
purple and
yellow/red 
flame.



Sakurai’s Object 
H-ingestion 
simulation on Blue 
Waters machine in 
Jan., 2014, on a 
grid of 15363 cells.

We see a 
hemisphere and 
make only mixtures 
of entrained 
hydrogen-rich gas 
with gas of the 
helium shell flash 
convection zone 
visible.  The energy 
release rate from 
burning ingested H 
is shown in very 
dark blue, yellow, 
and white.

t = 650 min.

Burning is now

occurring at

a larger

number 

of loca-
tions

at the

same

time.



Sakurai’s Object 
H-ingestion 
simulation on Blue 
Waters machine in 
Jan., 2014, on a 
grid of 15363 cells.

We see a 
hemisphere and 
make only mixtures 
of entrained 
hydrogen-rich gas 
with gas of the 
helium shell flash 
convection zone 
visible.  The energy 
release rate from 
burning ingested H 
is shown in very 
dark blue, yellow, 
and white.

t = 1188 min.

The burning front 

has now reached 

the antipode,

where

violent,
localized

energy

release

drives

the
oscill-

ation

back

to its

origin-
al site.

GOSH =

Global

Oscillation
of Shell

Hydrogen

ingestion.



Sakurai’s Object 
H-ingestion 
simulation on Blue 
Waters machine in 
Jan., 2014, on a 
grid of 15363 cells.

We see a 
hemisphere and 
make only mixtures 
of entrained 
hydrogen-rich gas 
with gas of the 
helium shell flash 
convection zone 
visible.  The energy 
release rate from 
burning ingested H 
is shown in very 
dark blue, yellow, 
and white.

t = 1200 min.

The GOSH is 

indeed global.

This flow has

a 1-D

average,
but it is

by no

means

a 1-D

phen-
omen-

on.

Blue

Waters

makes
it possi-

ble to

see the

GOSH in

its full 3-D
complexity.



Sakurai’s Object 
H-ingestion 
simulation on Blue 
Waters machine in 
Jan., 2014, on a 
grid of 15363 cells.

We see a 
hemisphere and 
make only mixtures 
of entrained 
hydrogen-rich gas 
with gas of the 
helium shell flash 
convection zone 
visible.  The energy 
release rate from 
burning ingested H 
is shown in very 
dark blue, yellow, 
and white.

t = 1212 min.

Once the GOSH

quiets down,

after about

a day in

the life 
of this

star,

we 

can

be 
well

justi-

fied

in 

carry-
ing our

descrip-

tion of 

the star

forward
with a 1-D

stellar evolution

code, suitably 

modified.



Sakurai’s Object 
H-ingestion 
simulation on Blue 
Waters machine in 
Jan., 2014, on a 
grid of 15363 cells.

We see a 
hemisphere and 
make only mixtures 
of entrained 
hydrogen-rich gas 
with gas of the 
helium shell flash 
convection zone 
visible.  The energy 
release rate from 
burning ingested H 
is shown in very 
dark blue, yellow, 
and white.

t = 1225 min.



Sakurai’s Object 
H-ingestion 
simulation on Blue 
Waters machine in 
Jan., 2014, on a 
grid of 15363 cells.

We see a 
hemisphere and 
make only mixtures 
of entrained 
hydrogen-rich gas 
with gas of the 
helium shell flash 
convection zone 
visible.  The energy 
release rate from 
burning ingested H 
is shown in very 
dark blue, yellow, 
and white.

t = 1238 min.



Sakurai’s Object 
H-ingestion 
simulation on Blue 
Waters machine in 
Mar., 2015, on a 
grid of 15363 cells.

We see a 
hemisphere and 
make only mixtures 
of entrained 
hydrogen-rich gas 
with gas of the 
helium shell flash 
convection zone 
visible.
Vorticity in a thin 
slice shows 
convection 
penetrating into 
upper, H-enriched 
layer.
t = dump 1406

1261 min.



Sakurai’s Object 
H-ingestion 
simulation on Blue 
Waters machine in 
Mar., 2015, on a 
grid of 15363 cells.

We see a 
hemisphere and 
make only mixtures 
of entrained 
hydrogen-rich gas 
with gas of the 
helium shell flash 
convection zone 
visible.
Vorticity in a thin 
slice 90° from 
previous one shows 
that H-ingestion 
has reached an 
entirely new level.

t = dump 1800



Sakurai’s Object 
H-ingestion 
simulation on Blue 
Waters machine in 
Mar., 2015, on a 
grid of 15363 cells.

We see a 
hemisphere and 
make only mixtures 
of entrained 
hydrogen-rich gas 
with gas of the 
helium shell flash 
convection zone 
visible.
A thin slice taken at 
90° from the 
previous view 
shows sloshing on 
equipotentials
producing mixing.
t = dump 1800

1442 min.



Pei-Hung and I volunteered, the rest of the team passed:
1. Goal:  Can we tap into the potential of the GPUs?

a. Previous tries with Fermi GPU failed.
Performance was about 50% of 1 CPU of the day.

b. Kepler is better.
1) More adders and multipliers (not necessary)
2) More registers per thread (a liberation)
3) Peak so high that even 5% of it would be great.

c. I had good experience moving PPB phase space 
advection to the GPU in Zurich in summer of 2014.

2. Impossible unless:
a. Compress on-chip work space to 32 KB (= L1 cache).
b. Never call syncthreads.
c. Prefetch data in globs of 128 words only, with each such 

fetch overlapped with computation.
d. Do significant amount of unnecessary computation in 

order to save storage space on chip.  10% extra flops.



Features of PPMstar related to High Performance & Scalability:
1. Briquette data structure.

a. Dimension DD(4,4,2,16,2,nbqs)
b. Dimension indxbq(4,0:nbqx+1,0:nbqy+1,0:nbqz+1,8)
c. Building AMR version.
d. DD is bunch of briquette records, 43 cells, 16 variables.
e. indxbq is a look-up table – indirect addressing of bqs.

2. Bizarre & difficult Fortran code expression, but readable.
a. Updates an entire pencil of briquettes in 1-D sweep.
b. Pipelined update of pair of grid planes of 4×4×2 cells.
c. 91 KB of instructions for 1100 flops/cell, 29 KB workspace.

3. CFDbuilder automatic code translator.
a. Truly wonderful but does not apply to GPU friendly version.

4. Within big loop, pattern repeated 4 times per traversal:
a. Receive a glob of 128 words landing in on-chip cache.
b. Prefetch next glob of 128 words.
c. Launch write-back of 128 words.
d. Compute what can while data trickles onto and off of chip.



The computation proceeds along a sequence of briquettes at same grid level.

In the on-chip cache 
workspace, we have 
many short segments 
of grid planes, each 
holding one variable 
and none  >  5 planes.

These briquettes are in 
transit between main 
memory and the cache.

In the cache, we unpack 
arriving briquettes into  
our temporary segments, 
and we pack results into 
updated briquettes.



What did we have to do to get to the GPU?
1. Everything we did for CELL processor and Intel MIC.

a. No problem, did that already.  Have code translator.
2. New feats:

1) Redefine basic data structure to fetch half-briquettes.
2) Process 2 rather than 1 grid plane of 4×4 cells at once.

New, but related, pipelining transformation.
3) Rearrange subroutines to consume data in globs and to 

minimize data that must persist from glob to glob.
4) Prefetch data in globs rather than whole bq at once.
5) Essentially do register allocation.  Totally unreasonable.

I swore that I would never do this.
Using subroutine stacks (or {} in CUDA) to do this is not 
allowed, because it will force stalls on data transfers.

a. Could a tool do this for you?
1) Of course.
2) Pei-Hung Lin will write it in ROSE if his management 

allows it.  It would help if you signed a petition.



Asessing the Potential Benefit:
1. On the dual CPU node of Blue Waters:

a. Achieve about 70 Gflop/s, or just 12% of peak.
b. To accomplish this now (in new GPU-oriented code):

1) Prefetch off-chip data 128 words ahead of need.
2) Process two 16-cell “grid planes” at a time in fully 

vectorized mode on SIMD engine.
3) Pipeline computation to eliminate redundant work 

(not all of it) and to reuse cached data.
4) Compress on-chip workspace to 29 KB.
5) Instructions are 91 KB.

c. Why is performance only 12% of peak?
1) Each core has tiny SIMD register file – way too small.
2) Bandwidth in and out of register file is way too low.
3) Cannot evict temporary results to L1 and read in new 

operands from L1 in time to keep SIMD engine busy.
4) About 80% of time is register spilling, apparently.
5) The chip could be redesigned to fix all this, of course.



Asessing the Potential Benefit 2:
1. On the Kepler K20 GPU with 6-D PPB:

a. Achieve about 150 Gflop/s, or just 4.3% of peak, on PPB 
phase space fluid advection.  (28 words in+out, 281 flops)

b. To accomplish this:
1) Prefetch off-chip data 128 words ahead of need.
2) Process one 32-cell “grid plane” at a time in fully 

vectorized mode on SIMD engine.
3) Pipeline computation to eliminate all redundant work 

and to reuse cached data maximally.
4) Compress on-chip workspace to 16 KB.
5) Instructions are relatively few & NO logic.

c. Why is performance only 4.3% of peak?
1) Each core is waiting on arrival of data 85% of time.
2) Bandwidth onto and off of chip is too low.
3) Cannot overlap waits on data with computation by 

other threads just like this – no room for them.
4) Chip redesign could fix all these limitations, of course.



Asessing the Potential Benefit 3:
1. On the Kepler K20 GPU with PPMstar:

a. Achieve about 121 Gflop/s, or just 3.4% of peak.
b. To accomplish this 1.68× speedup over BW node:

1) Prefetch off-chip data 128 words ahead of need.
2) Process two 16-cell “grid planes” at a time in fully 

vectorized mode on SIMD engine.
3) Pipeline computation to eliminate most redundant 

work and to reuse cached data a lot.
4) Compress on-chip workspace to 20.6 KB.
5) Instructions are still 91 KB, we can’t help that.

c. Why is performance only 3.4% of peak?
1) Each core is waiting on data to emerge from a very 

long processing pipes, with only 8 threads/core.
2) Compiler apparently cannot find any other 

operands to throw into the pipe until these emerge.
3) Cannot fit enough simultaneous threads onto chip.
4) Chip redesign could fix all this, of course.



Asessing the Potential Benefit 4:
1. How are others doing with CFD on GPUs?

a. WRF microphysics runs at twice our speed in Gflop/s.
1) It accounts for only 25% of the code’s running time.
2) After years, whole code has not been moved to GPU.

b. ASUCA weather code in Japan.
1) 51 Gflop/s per K20x GPU while running on 4108 GPUs.
2) Full implementation of code, but only half our speed.

c. Swiss team at ETH Zurich using Stella DSL.
1) Parareal advection diffusion, VERY simple.
2) 4.5x speedup over single Sandy Bridge CPU
3) But what is  1 ???
4) Use GNU compiler.  (We find GNU Fortran is worst.)
5) Get only 5x speedup from running 8 threads on the 8 

cores.   (We get 10x from 16 threads on 8 cores).
6) Code seems memory bandwidth limited on CPU.

(Ours is not, so they screwed up on CPU, apparently.)
2. We seem to be doing as well as or better than these others.



Tentative Conclusion:
1. K20 GPU likely not worth trouble for CFD w/o translator.

a. Too much work for too little benefit.
b. Restructured code much more difficult to maintain.
c. You could do it if you had to, but it is really hard.
d. Potential chip design changes that might help:

1) Prefetch more than 128 words at a time.
2) Build arithmetical pipes that complete in 5 or 6 

clocks, like everyone else does.
3) Build a compiler that will try to rearrange 

instruction order to keep pipe full.
4) Put a reasonable instruction cache onto the chip.
5) Add simple instructions to realign data in just one 

clock.  This cannot be hard.  Standard since 1973.
6) Produce a more reasonable balance between on-

chip data storage capacity and arithmetical units.
e. These things could happen.

1) They will never happen if we do not ask for them.



Tentative Conclusion:
1. K80 GPU better, but not better enough.

a. Our performance increases to 216 Gflop/s.
b. What made this 79% improvement?

1) More replicas of code per core enabled.
2) However, each replica still allowed max of only 32 KB.
3) Coding effort still immense.
4) Still always waiting for results to pop out of pipes.

c. 216 Gflops is triple present BW node performance.
1) But BW nodes old and K80 is new.
2) Dual Sandy Bridge node gives 114 Gflop/s & is old.
3) Dual Haswell node likely to at least match K80 perf.

2. Nvidia is trying, but not hard enough.
a. Why can’t I have fewer threads with more on-chip data?
b. Other chips and compilers can keep pipes full;  

what is Nvidia’s problem with this?
c. Why can’t I prefetch 4 KB all at once without stalling?
d. With 28 MB data on chip, why can’t I fit 91 KB of instructions?



GPU design is for up to 64 simultaneous threads per core:
1. 64 threads all fetching contiguous data covers latency.

a. This would be great if we cared about latency.
b. We can prefetch, and hence latency is irrelevant.

1) We simply PLAN our computation.
2) We pack the data we need in contiguous records.
3) Address records, not words, indirectly at no cost.
4) We have lots to do while data arrives.

c. Nvidia does not permit a single thread to prefetch more 
than a trivial amount of off-chip data.
1) Disastrous loss of performance, or coding handstands.
2) By demanding at least 8 threads per core, we are 

denied the space to stash arriving data even if we 
were allowed to prefetch it.

d. For CFD, we are better off with 2 threads/core, not 64.
2. 64 threads doing identical operations keeps long pipes full.

a. This would be great if we had 64 threads.
b. There is not enough space for the data 64 threads require.



Why can’t we compute Nvidia’s way; what is our problem?
1. Nvidia’s way requires order of magnitude more data traffic 

onto and off of the chip.
a. The chip does not offer enough bandwidth for this.
b. Even if it did, it is a bad solution, with huge power cost.

1) Moving the data on the chip is much more efficient 
than moving it onto and off of the chip.

2) Would have to get rid of some arithmetical units.
3) Why have arithmetical units only LinPack can use?
4) We have to stop quoting or reading LinPack numbers.

c. Nvidia offers useless cache space on the chip.
1) We update our data, we don’t just read it.
2) Practically no “shared memory” space per thread.

2. Nvidia GPUs get better on each generation.
a. They will eventually be powerful and easy to use for CFD.
b. I might see the day, but it is not today.
c. Fixes to chip that would greatly improve my code’s 

performance do not seem difficult or expensive at all.




